
pyDive Documentation
Release 1.1 beta

Heiko Burau

June 22, 2015

CONTENTS

1 Getting started 3
1.1 Quickstart . 3
1.2 Setup an IPython.parallel cluster configuration . 4
1.3 Run tests . 4
1.4 Overview . 4

2 Tutorials 5
2.1 Example 1: Total field energy . 6
2.2 Example 2: Particle density field . 7
2.3 Example 3: Particle energy spectrum . 9

3 Reference 11
3.1 Arrays . 11
3.2 Modules . 19

4 Indices and tables 29

Python Module Index 31

Index 33

i

ii

pyDive Documentation, Release 1.1 beta

Contents:

CONTENTS 1

pyDive Documentation, Release 1.1 beta

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Quickstart

pyDive is built on top of IPython.parallel, numpy and mpi4py. h5py, adios and pycuda are optional. Running python
setup.py install will install pyDive with these and other required packages from requirements.txt. Alterna-
tively you can install it via pip: pip install pyDive.

Basic code example:

import pyDive
pyDive.init(profile='mpi')

arrayA = pyDive.ones((1000, 1000, 1000), distaxes='all')
arrayB = pyDive.zeros_like(arrayA)

do some array operations, + - * / sin cos, ..., slicing, etc...
arrayC = arrayA + arrayB

plot result
import matplotlib.pyplot as plt
plt.imshow(arrayC[500,::10,::10])

Before actually running this script there must have been an IPython.parallel cluster launched (see section below)
otherwise pyDive.init() fails.

pyDive distributes array-memory along one or multiple user-specified axes:

You can either specify the exact decomposition for each axis or leave the default which persuits to squared chunks.

3

pyDive Documentation, Release 1.1 beta

Although the array elements are stored on the cluster nodes you have full access through indexing. If you want to have
a local array from a pyDive-array anyway you can call array.gather() but make sure that your pyDive-array is
small enough to fit into your local machine’s memory. If not you may want to slice it first. Note that an array is also
gathered implicitly if you try to access an attribute which is only available for the local array. This is why there is no
gather() in the example above when calling imshow().

1.2 Setup an IPython.parallel cluster configuration

The first step is to create an IPython.parallel profile: http://ipython.org/ipython-doc/2/parallel/parallel_process.html.
The name of this profile is the argument of pyDive.init(). It defaults to "mpi". Starting the cluster is then the
second and final step:

$ ipcluster start -n 4 --profile=mpi

1.3 Run tests

In order to test the pyDive installation run:

$ python setup.py test

This will ask you for the IPython.parallel profile to be used and the number of engines to be started, e.g.:

$ Name of your IPython-parallel profile you want to run the tests with: pbs
$ Number of engines: 256

Then the script starts the cluster, runs the tests and finally stops the cluster. If you have already a cluster running by
your own you can also run the tests by launching py.test from the pyDive directory and setting the environment
variable IPP_PROFILE_NAME to the profile’s name.

1.4 Overview

pyDive knows different kinds of distributed arrays, all corresponding to a local, non-distributed array:

• numpy -> pyDive.ndarray -> Stores array elements in cluster nodes’ memory.

• hdf5 -> pyDive.h5.h5_ndarray -> Stores array elements in a hdf5-file.

• adios -> pyDive.ad.ad_ndarray -> Stores array elements in a adios-file.

• gpu -> pyDive.gpu.gpu_ndarray -> Stores array elements in clusters’ gpus.

• pyDive.cloned_ndarray -> Holds independent copies of one array on cluster nodes.

Among these three packages there are a few modules:

• pyDive.structered -> structured datatypes

• pyDive.algorithm -> map, reduce, mapReduce

• pyDive.fragment -> fragment file-disk array to fit into the cluster’s main memory

• pyDive.mappings -> particle-mesh mappings

• pyDive.picongpu -> helper functions for picongpu-users

• pyDive.pyDive -> shortcuts for most used functions

4 Chapter 1. Getting started

http://ipython.org/ipython-doc/2/parallel/parallel_process.html

CHAPTER

TWO

TUTORIALS

In this section we are going through a few use cases for pyDive. If you want to test the code you can download the
sample hdf5-file. It has the following dataset structure:

$ h5ls -r sample.h5
/ Group
/fields Group
/fields/fieldB Group
/fields/fieldB/z Dataset {256, 256}
/fields/fieldE Group
/fields/fieldE/x Dataset {256, 256}
/fields/fieldE/y Dataset {256, 256}
/particles Group
/particles/cellidx Group
/particles/cellidx/x Dataset {10000}
/particles/cellidx/y Dataset {10000}
/particles/pos Group
/particles/pos/x Dataset {10000}
/particles/pos/y Dataset {10000}
/particles/vel Group
/particles/vel/x Dataset {10000}
/particles/vel/y Dataset {10000}
/particles/vel/z Dataset {10000}

After launching the cluster (Setup an IPython.parallel cluster configuration) the first step is to initialize pyDive:

import pyDive
pyDive.init()

Load a single dataset:

h5fieldB_z = pyDive.h5.open("sample.h5", "/fields/fieldB/z", distaxes='all')

assert type(h5fieldB_z) is pyDive.h5.h5_ndarray

h5fieldB_z just holds a dataset handle. To read out data into memory call load():

fieldB_z = h5fieldB_z.load()

assert type(fieldB_z) is pyDive.ndarray

This loads the entire dataset into the main memory of all engines. The array elements are distributed along all axes.

We can also load a hdf5-group:

h5fieldE = pyDive.h5.open("sample.h5", "/fields/fieldE", distaxes='all')
fieldE = h5fieldE.load()

5

pyDive Documentation, Release 1.1 beta

h5fieldE and fieldE are some so called “virtual array-of-structures”, see: pyDive.structered.

>>> print h5fieldE
VirtualArrayOfStructs<array-type: <class 'pyDive.distribution.multiple_axes.h5_ndarray'>, shape: [256, 256]>:

y -> float32
x -> float32

>>> print fieldE
VirtualArrayOfStructs<array-type: <class 'pyDive.distribution.multiple_axes.ndarray'>, shape: [256, 256]>:

y -> float32
x -> float32

Now, let’s do some calculations!

2.1 Example 1: Total field energy

Computing the total field energy of an electromagnetic field means squaring and summing or in pyDive’s words:

import pyDive
import numpy as np
pyDive.init()

h5input = "sample.h5"

h5fields = pyDive.h5.open(h5input, "/fields") # defaults to distaxes='all'
fields = h5fields.load() # read out all fields into cluster's main memory in parallel

energy_field = fields.fieldE.x**2 + fields.fieldE.y**2 + fields.fieldB.z**2

total_energy = pyDive.reduce(energy_field, np.add)
print total_energy

Output:

$ python example1.py
557502.0

Well this was just a very small hdf5-sample of 1.3 MB however in real world we deal with a lot greater data vol-
umes. So what happens if h5fields is too large to be stored in the main memory of the whole cluster? The line
fields = h5fields.load() will crash. In this case we want to load the hdf5 data piece by piece. The function
pyDive.fragment helps us doing so:

import pyDive
import numpy as np
pyDive.init()

h5input = "sample.h5"

big_h5fields = pyDive.h5.open(h5input, "/fields")
big_h5fields.load() # would cause a crash

total_energy = 0.0
for h5fields in pyDive.fragment(big_h5fields):

fields = h5fields.load()

energy_field = fields.fieldE.x**2 + fields.fieldE.y**2 + fields.fieldB.z**2

6 Chapter 2. Tutorials

pyDive Documentation, Release 1.1 beta

total_energy += pyDive.reduce(energy_field, np.add)

print total_energy

An equivalent way to get this result is a pyDive.mapReduce:
...
def square_fields(h5fields):

fields = h5fields.load()
return fields.fieldE.x**2 + fields.fieldE.y**2 + fields.fieldB.z**2

total_energy = pyDive.mapReduce(square_fields, np.add, h5fields)
print total_energy

square_fields is called on each engine where h5fields is a structure (pyDive.arrayOfStructs) of
h5_ndarrays representing a sub part of the big h5fields. pyDive.algorithm.mapReduce() can be
called with an arbitrary number of arrays including pyDive.ndarrays, pyDive.h5.h5_ndarrays,
pyDive.adios.ad_ndarrays and pyDive.cloned_ndarrays. If there are
pyDive.h5.h5_ndarrays or pyDive.adios.ad_ndarrays it will check whether they fit into the
combined main memory of all cluster nodes as a whole and loads them piece by piece if not.

Now let’s say our dataset is really big and we just want to get a first estimate of the total energy:
...
total_energy = pyDive.mapReduce(square_fields, np.add, h5fields[::10, ::10]) * 10.0**2

Slicing on pyDive-arrays is always allowed.

If you use picongpu here is an example of how to get the total field energy for each timestep (see
pyDive.picongpu):

import pyDive
import numpy as np
pyDive.init()

def square_field(h5field):
field = h5field.load()
return field.x**2 + field.x**2 + field.x**2

for step, h5field in pyDive.picongpu.loadAllSteps("/.../simOutput", "fields/FieldE"):
total_energy = pyDive.mapReduce(square_field, np.add, h5field)

print step, total_energy

2.2 Example 2: Particle density field

Given the list of particles in our sample.h5 we want to create a 2D density field out of it. For this particle-to-mesh
mapping we need to apply a certain particle shape like cloud-in-cell (CIC), triangular-shaped-cloud (TSC), and so on.
A list of these together with the actual mapping functions can be found in the pyDive.mappings module. If you
miss a shape you can easily create one by your own by defining a particle shape function. Note that if you have numba
installed the shape function will be compiled resulting in a significant speed-up.

We assume that the particle positions are distributed randomly. This means although each engine is
loading a separate part of all particles it needs to write to the entire density field. Therefore the
density field must have a whole representation on each participating engine. This is the job of
pyDive.cloned_ndarray.cloned_ndarray.cloned_ndarray .

2.2. Example 2: Particle density field 7

https://github.com/ComputationalRadiationPhysics/picongpu
http://numba.pydata.org/

pyDive Documentation, Release 1.1 beta

import pyDive
import numpy as np
pyDive.init()

shape = [256, 256]
density = pyDive.cloned.zeros(shape)

h5input = "sample.h5"

particles = pyDive.h5.open(h5input, "/particles")

def particles2density(particles, density):
particles = particles.load()
total_pos = particles.cellidx.astype(np.float32) + particles.pos

convert total_pos to an (N, 2) shaped array
total_pos = np.hstack((total_pos.x[:,np.newaxis],

total_pos.y[:,np.newaxis]))

par_weighting = np.ones(particles.shape)
import pyDive.mappings
pyDive.mappings.particles2mesh(density, par_weighting, total_pos, pyDive.mappings.CIC)

pyDive.map(particles2density, particles, density)

final_density = density.sum() # add up all local copies

from matplotlib import pyplot as plt
plt.imshow(final_density)
plt.show()

Output:

8 Chapter 2. Tutorials

pyDive Documentation, Release 1.1 beta

Here, as in the first example, particles2density is a function executed on the engines
by pyDive.algorithm.map(). All of its arguments are numpy-arrays or structures
(pyDive.arrayOfStructs) of numpy-arrays.

pyDive.algorithm.map() can also be used as a decorator:

@pyDive.map
def particles2density(particles, density):

...

particles2density(particles, density)

2.3 Example 3: Particle energy spectrum

import pyDive
import numpy as np
pyDive.init()

bins = 256
spectrum = pyDive.cloned.zeros([bins])

h5input = "sample.h5"

velocities = pyDive.h5.open(h5input, "/particles/vel")

2.3. Example 3: Particle energy spectrum 9

pyDive Documentation, Release 1.1 beta

@pyDive.map
def vel2spectrum(velocities, spectrum, bins):

velocities = velocities.load()
mass = 1.0
energies = 0.5 * mass * (velocities.x**2 + velocities.y**2 + velocities.z**2)

spectrum[:], bin_edges = np.histogram(energies, bins)

vel2spectrum(velocities, spectrum, bins=bins)

final_spectrum = spectrum.sum() # add up all local copies

from matplotlib import pyplot as plt
plt.plot(final_spectrum)
plt.show()

Output:

10 Chapter 2. Tutorials

CHAPTER

THREE

REFERENCE

3.1 Arrays

3.1.1 pyDive.arrays.ndarray module

Note: All of this module’s functions and classes are also directly accessable from the pyDive module.

pyDive.ndarray class

class pyDive.ndarray(shape, dtype=<type ‘float’>, distaxes=’all’, target_offsets=None, tar-
get_ranks=None, no_allocation=False, **kwargs)

Represents a cluster-wide, multidimensional, homogeneous array of fixed-size elements. cluster-wide means
that its elements are distributed across IPython.parallel-engines. The distribution is done in one or multiply
dimensions along user-specified axes. The user can optionally specify which engine maps to which index range
or leave the default that persuits an uniform distribution across all engines.

This ndarray - class is auto-generated out of its local counterpart: numpy.ndarray.

The implementation is based on IPython.parallel and local numpy.ndarray - arrays. Every special operation
numpy.ndarray implements (“__add__”, “__le__”, ...) is also available for ndarray.

Note that array slicing is a cheap operation since no memory is copied. However this can easily lead to the
situation where you end up with two arrays of the same size but of distinct element distribution. Therefore call
dist_like() first before doing any manual stuff on their local arrays. However every cluster-wide array operation
first equalizes the distribution of all involved arrays, so an explicit call to dist_like() is rather unlikely in most
use cases.

If you try to access an attribute that is only available for the local array, the request is forwarded to an internal
local copy of the whole distributed array (see: gather()). This internal copy is only created when you want
to access it and is held until __setitem__ is called, i.e. the array’s content is manipulated.

__init__(shape, dtype=<type ‘float’>, distaxes=’all’, target_offsets=None, target_ranks=None,
no_allocation=False, **kwargs)

Creates an instance of ndarray. This is a low-level method of instantiating an array, it should rather be
constructed using factory functions (“empty”, “zeros”, “open”, ...)

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

• distaxes (ints) – distributed axes. Accepts a single integer too. Defaults to ‘all’ mean-
ing each axis is distributed.

11

pyDive Documentation, Release 1.1 beta

• target_offsets (list of lists) – For each distributed axis there is a (inner) list in the
outer list. The inner list contains the offsets of the local array.

• target_ranks (ints) – linear list of engine ranks holding the local arrays. The last
distributed axis is iterated over first.

• no_allocation (bool) – if True no instance of numpy.ndarray will be created on
engine. Useful for manual instantiation of the local array.

• kwargs – additional keyword arguments are forwarded to the constructor of the local
array.

copy()
Returns a hard copy of this array.

dist_like(other)
Redistributes a copy of this array (self) like other and returns the result. Checks whether redistribution is
necessary and returns self if not.

Redistribution involves inter-engine communication.

Parameters other (distributed array) – target array

Raises AssertionError if the shapes of self and other don’t match.

Returns new array with the same content as self but distributed like other. If self is already
distributed like other nothing is done and self is returned.

gather()
Gathers local instances of numpy.ndarray from engines, concatenates them and returns the result.

Note: You may not call this method explicitly because if you try to access an attribute of the local array
(numpy.ndarray), gather() is called implicitly before the request is forwarded to that internal gathered
array. Just access attributes like you do for the local array. The internal copy is held until __setitem__
is called, e.g. a[1] = 3.0, setting a dirty flag to the local copy.

Warning: If another array overlapping this array is manipulating its data there is no chance to set the
dirty flag so you have to keep in mind to call gather() explicitly in this case!

Returns instance of numpy.ndarray

Factory functions

These are convenient functions to create a pyDive.ndarray instance.

pyDive.arrays.ndarray.array(array_like, distaxes=’all’)
Create a pyDive.ndarray instance from an array-like object.

Parameters

• array_like – Any object exposing the array interface, e.g. numpy-array, python se-
quence, ...

• distaxes (ints) – distributed axes. Defaults to ‘all’ meaning each axis is distributed.

pyDive.arrays.ndarray.empty(shape, dtype=<type ‘float’>, distaxes=’all’, **kwargs)
Create a ndarray instance. This function calls its local counterpart numpy.empty on each engine.

Parameters

• shape (ints) – shape of array

12 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

• dtype – datatype of a single element

• distaxes (ints) – distributed axes

• kwargs – keyword arguments are passed to the local function numpy.empty

pyDive.arrays.ndarray.empty_like(other, **kwargs)
Create a ndarray instance with the same shape, dtype and distribution as other. This function calls its local
counterpart numpy.empty_like on each engine.

Parameters

• other – other array

• kwargs – keyword arguments are passed to the local function numpy.empty_like

pyDive.arrays.ndarray.hollow(shape, dtype=<type ‘float’>, distaxes=’all’)
Create a pyDive.ndarray instance distributed across all engines without allocating a local numpy-array.

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

• distaxes (ints) – distributed axes. Defaults to ‘all’ meaning each axis is distributed.

pyDive.arrays.ndarray.hollow_like(other)
Create a pyDive.ndarray instance with the same shape, distribution and type as otherwithout allocating a local
numpy-array.

pyDive.arrays.ndarray.zeros(shape, dtype=<type ‘float’>, distaxes=’all’, **kwargs)
Create a ndarray instance. This function calls its local counterpart numpy.zeros on each engine.

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

• distaxes (ints) – distributed axes

• kwargs – keyword arguments are passed to the local function numpy.zeros

pyDive.arrays.ndarray.zeros_like(other, **kwargs)
Create a ndarray instance with the same shape, dtype and distribution as other. This function calls its local
counterpart numpy.zeros_like on each engine.

Parameters

• other – other array

• kwargs – keyword arguments are passed to the local function numpy.zeros_like

pyDive.arrays.ndarray.ones(shape, dtype=<type ‘float’>, distaxes=’all’, **kwargs)
Create a ndarray instance. This function calls its local counterpart numpy.ones on each engine.

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

• distaxes (ints) – distributed axes

• kwargs – keyword arguments are passed to the local function numpy.ones

3.1. Arrays 13

pyDive Documentation, Release 1.1 beta

pyDive.arrays.ndarray.ones_like(other, **kwargs)
Create a ndarray instance with the same shape, dtype and distribution as other. This function calls its local
counterpart numpy.ones_like on each engine.

Parameters

• other – other array

• kwargs – keyword arguments are passed to the local function numpy.ones_like

Universal functions

numpy knows the so called ufuncs (universal function). These are functions which can be applied elementwise on an
array, like sin, cos, exp, sqrt, etc. All of these ufuncs from numpy are also available for pyDive.ndarray arrays, e.g.

a = pyDive.ones([100])
a = pyDive.sin(a)

3.1.2 pyDive.arrays.h5_ndarray module

Note: This module has a shortcut: pyDive.h5.

class pyDive.arrays.h5_ndarray.h5_ndarray(shape, dtype=<type ‘float’>, distaxes=’all’,
target_offsets=None, target_ranks=None,
no_allocation=False, **kwargs)

Represents a cluster-wide, multidimensional, homogeneous array of fixed-size elements. cluster-wide means
that its elements are distributed across IPython.parallel-engines. The distribution is done in one or multiply
dimensions along user-specified axes. The user can optionally specify which engine maps to which index range
or leave the default that persuits an uniform distribution across all engines.

This h5_ndarray - class is auto-generated out of its local counterpart: py-
Dive.arrays.local.h5_ndarray.h5_ndarray.

The implementation is based on IPython.parallel and local pyDive.arrays.local.h5_ndarray.h5_ndarray - arrays.
Every special operation pyDive.arrays.local.h5_ndarray.h5_ndarray implements (“__add__”, “__le__”, ...) is
also available for h5_ndarray.

Note that array slicing is a cheap operation since no memory is copied. However this can easily lead to the
situation where you end up with two arrays of the same size but of distinct element distribution. Therefore call
dist_like() first before doing any manual stuff on their local arrays. However every cluster-wide array operation
first equalizes the distribution of all involved arrays, so an explicit call to dist_like() is rather unlikely in most
use cases.

If you try to access an attribute that is only available for the local array, the request is forwarded to an internal
local copy of the whole distributed array (see: gather()). This internal copy is only created when you want
to access it and is held until __setitem__ is called, i.e. the array’s content is manipulated.

__init__(shape, dtype=<type ‘float’>, distaxes=’all’, target_offsets=None, target_ranks=None,
no_allocation=False, **kwargs)

Creates an instance of h5_ndarray. This is a low-level method of instantiating an array, it should rather be
constructed using factory functions (“empty”, “zeros”, “open”, ...)

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

14 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

• distaxes (ints) – distributed axes. Accepts a single integer too. Defaults to ‘all’ mean-
ing each axis is distributed.

• target_offsets (list of lists) – For each distributed axis there is a (inner) list in the
outer list. The inner list contains the offsets of the local array.

• target_ranks (ints) – linear list of engine ranks holding the local arrays. The last
distributed axis is iterated over first.

• no_allocation (bool) – if True no instance of py-
Dive.arrays.local.h5_ndarray.h5_ndarray will be created on engine. Useful for manual
instantiation of the local array.

• kwargs – additional keyword arguments are forwarded to the constructor of the local
array.

load()
Load array from file into main memory of all engines in parallel.

Returns pyDive.ndarray instance

pyDive.arrays.h5_ndarray.open(filename, datapath, distaxes=’all’)
Create an pyDive.h5.h5_ndarray instance respectively a structure of pyDive.h5.h5_ndarray instances from file.

Parameters

• filename – name of hdf5 file.

• dataset_path – path within hdf5 file to a single dataset or hdf5 group.

• ints (distaxes) – distributed axes. Defaults to ‘all’ meaning each axis is distributed.

Returns pyDive.h5.h5_ndarray instance / structure of pyDive.h5.h5_ndarray instances

pyDive.arrays.h5_ndarray.open_dset(filename, dataset_path, distaxes=’all’)
Create a pyDive.h5.h5_ndarray instance from file.

Parameters

• filename – name of hdf5 file.

• dataset_path – path within hdf5 file to a single dataset.

• ints (distaxes) – distributed axes. Defaults to ‘all’ meaning each axis is distributed.

Returns pyDive.h5.h5_ndarray instance

3.1.3 pyDive.arrays.ad_ndarray module

Note: This module has a shortcut: pyDive.adios.

3.1.4 pyDive.arrays.gpu_ndarray module

Note: This module has a shortcut: pyDive.gpu.

class pyDive.arrays.gpu_ndarray.gpu_ndarray(shape, dtype=<type ‘float’>, distaxes=’all’,
target_offsets=None, target_ranks=None,
no_allocation=False, **kwargs)

Represents a cluster-wide, multidimensional, homogeneous array of fixed-size elements. cluster-wide means
that its elements are distributed across IPython.parallel-engines. The distribution is done in one or multiply

3.1. Arrays 15

pyDive Documentation, Release 1.1 beta

dimensions along user-specified axes. The user can optionally specify which engine maps to which index range
or leave the default that persuits an uniform distribution across all engines.

This gpu_ndarray - class is auto-generated out of its local counterpart: py-
Dive.arrays.local.gpu_ndarray.gpu_ndarray.

The implementation is based on IPython.parallel and local pyDive.arrays.local.gpu_ndarray.gpu_ndarray - ar-
rays. Every special operation pyDive.arrays.local.gpu_ndarray.gpu_ndarray implements (“__add__”, “__le__”,
...) is also available for gpu_ndarray.

Note that array slicing is a cheap operation since no memory is copied. However this can easily lead to the
situation where you end up with two arrays of the same size but of distinct element distribution. Therefore call
dist_like() first before doing any manual stuff on their local arrays. However every cluster-wide array operation
first equalizes the distribution of all involved arrays, so an explicit call to dist_like() is rather unlikely in most
use cases.

If you try to access an attribute that is only available for the local array, the request is forwarded to an internal
local copy of the whole distributed array (see: gather()). This internal copy is only created when you want
to access it and is held until __setitem__ is called, i.e. the array’s content is manipulated.

__init__(shape, dtype=<type ‘float’>, distaxes=’all’, target_offsets=None, target_ranks=None,
no_allocation=False, **kwargs)

Creates an instance of gpu_ndarray. This is a low-level method of instantiating an array, it should rather
be constructed using factory functions (“empty”, “zeros”, “open”, ...)

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

• distaxes (ints) – distributed axes. Accepts a single integer too. Defaults to ‘all’ mean-
ing each axis is distributed.

• target_offsets (list of lists) – For each distributed axis there is a (inner) list in the
outer list. The inner list contains the offsets of the local array.

• target_ranks (ints) – linear list of engine ranks holding the local arrays. The last
distributed axis is iterated over first.

• no_allocation (bool) – if True no instance of py-
Dive.arrays.local.gpu_ndarray.gpu_ndarray will be created on engine. Useful for
manual instantiation of the local array.

• kwargs – additional keyword arguments are forwarded to the constructor of the local
array.

to_cpu()
Copy array data to cpu main memory.

Result pyDive.ndarray distributed cpu array.

pyDive.arrays.gpu_ndarray.array(array_like, distaxes=’all’)
Create a pyDive.gpu_ndarray instance from an array-like object.

Parameters

• array_like – Any object exposing the array interface, e.g. numpy-array, python se-
quence, ...

• distaxis (ints) – distributed axes. Defaults to ‘all’ meaning each axis is distributed.

pyDive.arrays.gpu_ndarray.hollow(shape, dtype=<type ‘float’>, distaxes=’all’)
Create a pyDive.gpu_ndarray instance distributed across all engines without allocating a local gpu-array.

16 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

Parameters

• shape (ints) – shape of array

• dtype – datatype of a single element

• distaxes (ints) – distributed axes. Defaults to ‘all’ meaning each axis is distributed.

pyDive.arrays.gpu_ndarray.hollow_like(other)
Create a pyDive.gpu_ndarray instance with the same shape, distribution and type as other without allocating
a local gpu-array.

3.1.5 pyDive.cloned_ndarray package

Submodules

pyDive.cloned_ndarray.cloned_ndarray module

class pyDive.cloned_ndarray.cloned_ndarray.cloned_ndarray(shape, dtype=<type
‘float’>, tar-
get_ranks=’all’,
no_allocation=False)

Represents a multidimensional, homogenous array of fixed-size elements which is cloned on the cluster
nodes. Cloned means that every participating engine holds an independent, local numpy-array of the user-
defined shape. The user can then do e.g. some manual stuff on the local arrays or some computation with
pyDive.algorithm on them.

Note that there exists no ‘original’ array as the name might suggest but something like that can be generated by
merge().

__init__(shape, dtype=<type ‘float’>, target_ranks=’all’, no_allocation=False)
Creates an pyDive.cloned_ndarray.cloned_ndarray.cloned_ndarray instance. This is
a low-level method for instanciating a cloned_array. Cloned arrays should be constructed using ‘empty’,
‘zeros’ or ‘empty_targets_like’ (see pyDive.cloned_ndarray.factories).

Parameters

• shape (ints) – size of the array on each axis

• dtype (numpy-dtype) – datatype of a single data value

• target_ranks (ints) – list of engine-ids that share this array. Or ‘all’ for all engines.

• no_allocation (bool) – if True no actual memory, i.e. numpy-array, will be allo-
cated on engine. Useful when you want to assign an existing numpy array manually.

merge(op)
Merge all local arrays in a pair-wise operation into a single numpy-array.

Parameters op – Merging operation. Expects two numpy-arrays and returns one.

Returns merged numpy-array.

sum()
Add up all local arrays.

Returns numpy-array.

3.1. Arrays 17

pyDive Documentation, Release 1.1 beta

pyDive.cloned_ndarray.factories module

This module holds high-level functions for instanciating pyDive.cloned_ndarrays.

pyDive.cloned_ndarray.factories.empty(shape, dtype=<type ‘float’>)
Return a new pyDive.cloned_ndarray package utilizing all engines without initializing elements.

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

pyDive.cloned_ndarray.factories.empty_engines_like(shape, dtype, a)
Return a new pyDive.cloned_ndarray utilizing the same engines a does without initializing elements.

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

• a – pyDive.arrays.ndarray module

pyDive.cloned_ndarray.factories.hollow(shape, dtype=<type ‘float’>)

Return a new pyDive.cloned_ndarray package utilizing all engines without allocating a local numpy-
array.

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

pyDive.cloned_ndarray.factories.hollow_engines_like(shape, dtype, a)
Return a new pyDive.cloned_ndarray utilizing the same engines a does without allocating a local numpy-
array.

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

• a – pyDive.arrays.ndarray module

pyDive.cloned_ndarray.factories.ones(shape, dtype=<type ‘float’>)
Return a new pyDive.cloned_ndarray package utilizing all engines filled with ones.

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

pyDive.cloned_ndarray.factories.zeros(shape, dtype=<type ‘float’>)
Return a new pyDive.cloned_ndarray package utilizing all engines filled with zeros.

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

pyDive.cloned_ndarray.factories.zeros_engines_like(shape, dtype, a)
Return a new pyDive.cloned_ndarray package utilizing the same engines a does filled with zeros.

18 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

Parameters

• shape (ints) – shape of the array

• dtype (numpy-dtype) – datatype of a single data value

• a – pyDive.arrays.ndarray module

3.2 Modules

Note: All functions of these modules are also directly accessable from the pyDive module.

3.2.1 pyDive.arrayOfStructs module

The arrayOfStructs module addresses the common problem when dealing with structured data: While the user likes
an array-of-structures layout the machine prefers a structure-of-arrays. In pyDive the method of choice is a virtual
array-of-structures-object. It holds array-like attributes such as shape and dtype and allows for slicing but is operating
on a structure-of-arrays internally.

Example:
...
treeOfArrays = {"FieldE" :

{"x" : fielde_x,
"y" : fielde_y,
"z" : fielde_z},

"FieldB" :
{"x" : fieldb_x,
"y" : fieldb_y,
"z" : fieldb_z}

}

fields = pyDive.arrayOfStructs(treeOfArrays)

half = fields[::2]["FieldE/x"]
equivalent to
half = fields["FieldE/x"][::2]
equivalent to
half = fields["FieldE"]["x"][::2]
equivalent to
half = fields["FieldE"][::2]["x"]

equivalent to
half = fields.FieldE.x[::2]

The example shows that in fact fields can be treated as an array-of-structures or a structure-of-arrays depending on
what is more appropriate.

The goal is to make the virtual array-of-structs-object look like a real array. Therefore every method call or operation
is forwarded to the individual arrays.:

new_field = fields.FieldE.astype(np.int) + fields.FieldB.astype(np.float)

Here the forwarded method calls are astype and __add__.

pyDive.arrayOfStructs.arrayOfStructs(structOfArrays)
Convert a structure-of-arrays into a virtual array-of-structures.

3.2. Modules 19

pyDive Documentation, Release 1.1 beta

Parameters structOfArrays – tree-like dictionary of arrays.

Raises

• AssertionError – if the arrays-types do not match. Datatypes may differ.

• AssertionError – if the shapes do not match.

Returns Custom object representing a virtual array whose elements have the same tree-like structure
as structOfArrays.

3.2.2 pyDive.algorithm module

pyDive.algorithm.map(f, *arrays, **kwargs)
Applies f on engine on local arrays related to arrays. Example:

cluster_array = pyDive.ones(shape=[100], distaxes=0)

cluster_array *= 2.0
equivalent to
pyDive.map(lambda a: a *= 2.0, cluster_array) # a is the local numpy-array of *cluster_array*

Or, as a decorator:

@pyDive.map
def twice(a):

a *= 2.0

twice(cluster_array)

Parameters

• f (callable) – function to be called on engine. Has to accept numpy-arrays and kwargs

• arrays – list of arrays including pyDive.ndarrays, pyDive.h5_ndarrays or py-
Dive.cloned_ndarrays

• kwargs – user-specified keyword arguments passed to f

Raises

• AssertionError – if the shapes of pyDive.ndarrays and pyDive.h5_ndarrays do not
match

• AssertionError – if the distaxes attributes of pyDive.ndarrays and pyDive.h5_ndarrays
do not match

Notes:

• If the hdf5 data exceeds the memory limit (currently 25% of the combined main memory of all cluster
nodes) the data will be read block-wise so that a block fits into memory.

• map chooses the list of engines from the first element of arrays. On these engines f is called. If the
first array is a pyDive.h5_ndarray all engines will be used.

• map is not writing data back to a pyDive.h5_ndarray yet.

• map does not equalize the element distribution of pyDive.ndarrays before execution.

20 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

pyDive.algorithm.mapReduce(map_func, reduce_op, *arrays, **kwargs)
Applies map_func on engine on local arrays related to arrays and reduces its result in a tree-like fashion over all
axes. Example:

cluster_array = pyDive.ones(shape=[100], distaxes=0)

s = pyDive.mapReduce(lambda a: a**2, np.add, cluster_array) # a is the local numpy-array of *cluster_array*
assert s == 100

Parameters

• f (callable) – function to be called on engine. Has to accept numpy-arrays and kwargs

• reduce_op (numpy-ufunc) – reduce operation, e.g. numpy.add.

• arrays – list of arrays including pyDive.ndarrays, pyDive.h5_ndarrays or py-
Dive.cloned_ndarrays

• kwargs – user-specified keyword arguments passed to f

Raises

• AssertionError – if the shapes of pyDive.ndarrays and pyDive.h5_ndarrays do not
match

• AssertionError – if the distaxes attributes of pyDive.ndarrays and pyDive.h5_ndarrays
do not match

Notes:

• If the hdf5 data exceeds the memory limit (currently 25% of the combined main memory of all cluster
nodes) the data will be read block-wise so that a block fits into memory.

• mapReduce chooses the list of engines from the first element of arrays. On these engines the mapRe-
duce will be executed. If the first array is a pyDive.h5_ndarray all engines will be used.

• mapReduce is not writing data back to a pyDive.h5_ndarray yet.

• mapReduce does not equalize the element distribution of pyDive.ndarrays before execution.

pyDive.algorithm.reduce(array, op)
Perform a tree-like reduction over all axes of array.

Parameters

• array – pyDive.ndarray, pyDive.h5_ndarray or pyDive.cloned_ndarray to be reduced

• op (numpy-ufunc) – reduce operation, e.g. numpy.add.

If the hdf5 data exceeds the memory limit (currently 25% of the combined main memory of all cluster nodes)
the data will be read block-wise so that a block fits into memory.

3.2.3 pyDive.fragment module

pyDive.fragment.fragment(*arrays, **kwargs)
Create fragments of arrays so that each fragment will fit into the combined main memory of all engines when
calling load(). The fragmentation is done by array slicing along the longest axis of arrays[0]. The edge
size of the fragments is a power of two except for the last fragment.

Parameters

• array – distributed arrays (e.g. pyDive.ndarray, pyDive.h5_ndarray, ...)

3.2. Modules 21

pyDive Documentation, Release 1.1 beta

• kwargs – optional keyword arguments are: memory_limit and offset.

• memory_limit (float) – fraction of the combined main memory of all engines reserved
for fragmentation. Defaults to 0.25.

• offset (bool) – If True the returned tuple is extended by the fragments’ offset (along the
distributed axis). Defaults to False.

Raises

• AssertionError – If not all arrays have the same shape.

• AssertionError – If not all arrays are distributed along the same axis.

Returns generator object (list) of tuples. Each tuple consists of one fragment for each array in
arrays.

Note that arrays may contain an arbitrary number of distributed arrays of any type. While the fragments’ size
is solely calculated based on the memory consumption of arrays that store their elements on hard disk (see
hdd_arraytypes), the fragmentation itself is applied on all arrays in the same way.

Example:

big_h5_array = pyDive.h5.open("monster.h5", "/")
big_h5_array.load() # crash

for h5_array, offset in pyDive.fragment(big_h5_array, offset=True):
a = h5_array.load() # no crash
print "This fragment's offset is", offset, "on axis:", a.distaxis

pyDive.fragment.hdd_arraytypes = (<class ‘pyDive.distribution.multiple_axes.h5_ndarray’>, None)
list of array types that store their elements on hard disk

3.2.4 pyDive.mappings module

If numba is installed the particle shape functions will be compiled which gives an appreciable speedup.

class pyDive.mappings.CIC
Cloud-in-Cell

class pyDive.mappings.NGP
Nearest-Grid-Point

pyDive.mappings.mesh2particles(mesh, particles_pos, shape_function=<class py-
Dive.mappings.CIC>)

Map mesh values to particles according to a particle shape function.

Parameters

• mesh (array-like) – n-dimensional array. Dimension of mesh has to be greater or equal to
the number of particle position components.

• particles_pos ((N, d)) – ‘d’-dim tuples for ‘N’ particle positions. The positions can be
float32 or float64 and must be within the shape of mesh.

• shape_function (callable, optional) – Callable object returning the particle assignment
value for a given param ‘x’. Has to provide a ‘support’ float attribute which defines the width
of the non-zero area. Defaults to cloud-in-cell.

Returns Mapped mesh values for each particle.

Notes:

22 Chapter 3. Reference

http://numba.pydata.org/

pyDive Documentation, Release 1.1 beta

• The particle shape function is not evaluated outside the mesh.

pyDive.mappings.particles2mesh(mesh, particles, particles_pos, shape_function=<class py-
Dive.mappings.CIC>)

Map particle values to mesh according to a particle shape function. Particle values are added to the mesh.

Parameters

• mesh (array-like) – n-dimensional array. Dimension of mesh has to be greater or equal to
the number of particle position components.

• particles (array_like (1 dim)) – particle data. len(particles) has to be the same as
len(particles_pos)

• particles_pos ((N, d)) – ‘d’-dim tuples for ‘N’ particle positions. The positions can be
float32 or float64 and must be within the shape of mesh.

• shape_function (callable, optional) – Callable object returning the particle assignment
value for a given param ‘x’. Has to provide a ‘support’ float attribute which defines the width
of the non-zero area. Defaults to cloud-in-cell.

Returns mesh

Notes:

• The particle shape function is not evaluated outside the mesh.

3.2.5 pyDive.picongpu module

This module holds convenient functions for those who use pyDive together with picongpu.

pyDive.picongpu.getSteps(folder_path)
Returns a list of all timesteps in folder_path.

pyDive.picongpu.loadAllSteps(folder_path, data_path, distaxis=0)
Python generator object looping hdf5-data of all timesteps found in folder_path.

This generator doesn’t read or write any data elements from hdf5 but returns dataset-handles covered by py-
Dive.h5_ndarray objects.

All datasets within data_path must have the same shape.

Parameters

• folder_path (str) – Path to the folder containing the hdf5-files

• data_path (str) – Relative path starting from “/data/<timestep>/” within hdf5-file to the
dataset or group of datasets

• distaxis (int) – axis on which datasets are distributed over when once loaded into mem-
ory.

Returns tuple of timestep and a pyDive.h5_ndarray or a structure of pyDive.h5_ndarrays
(pyDive.structured). Ordering is done by timestep.

Notes:

• If the dataset has a ‘sim_unit‘ attribute its value is stored in h5array.unit.

3.2. Modules 23

http://www.github.com/ComputationalRadiationPhysics/picongpu

pyDive Documentation, Release 1.1 beta

pyDive.picongpu.loadStep(step, folder_path, data_path, distaxis=0)
Load hdf5-data from a single timestep found in folder_path.

All datasets within data_path must have the same shape.

Parameters

• step (int) – timestep

• folder_path (str) – Path to the folder containing the hdf5-files

• data_path (str) – Relative path starting from “/data/<timestep>/” within hdf5-file to the
dataset or group of datasets

• distaxis (int) – axis on which datasets are distributed over when once loaded into mem-
ory.

Returns pyDive.h5_ndarray or a structure of pyDive.h5_ndarrays (pyDive.structured).

Notes:

• If the dataset has a ‘sim_unit‘ attribute its value is stored in h5array.unit.

pyDive.picongpu.loadSteps(steps, folder_path, data_path, distaxis=0)
Python generator object looping all hdf5-data found in folder_path from timesteps appearing in steps.

This generator doesn’t read or write any data elements from hdf5 but returns dataset-handles covered by py-
Dive.h5_ndarray objects.

All datasets within data_path must have the same shape.

Parameters

• steps (ints) – list of timesteps to loop

• folder_path (str) – Path to the folder containing the hdf5-files

• data_path (str) – Relative path starting from “/data/<timestep>/” within hdf5-file to the
dataset or group of datasets

• distaxis (int) – axis on which datasets are distributed over when once loaded into mem-
ory.

Returns tuple of timestep and a pyDive.h5_ndarray or a structure of pyDive.h5_ndarrays
(pyDive.structured). Ordering is done by timestep.

Notes:

• If the dataset has a ‘sim_unit‘ attribute its value is stored in h5array.unit.

3.2.6 pyDive.pyDive module

Make most used functions and modules directly accessable from pyDive.

Functions:

abs

absolute

add

arccos

arccosh

24 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

arcsin

arcsinh

arctan

arctan2

arctanh

array

bitwise_and

bitwise_not

bitwise_or

bitwise_xor

ceil

conj

conjugate

copysign

cos

cosh

deg2rad

degrees

divide

empty

empty_like

equal

exp

exp2

expm1

fabs

floor

floor_divide

fmax

fmin

fmod

fragment

frexp

greater

greater_equal

hollow

3.2. Modules 25

pyDive Documentation, Release 1.1 beta

hollow_like

hypot

init

invert

isfinite

isinf

isnan

ldexp

left_shift

less

less_equal

log

log10

log1p

log2

logaddexp

logaddexp2

logical_and

logical_not

logical_or

logical_xor

map

mapReduce

maximum

mesh2particles

minimum

mod

modf

multiply

ndarray

negative

nextafter

not_equal

ones

ones_like

particles2mesh

26 Chapter 3. Reference

pyDive Documentation, Release 1.1 beta

power

rad2deg

radians

reciprocal

reduce

remainder

right_shift

rint

sign

signbit

sin

sinh

spacing

sqrt

square

structured

subtract

tan

tanh

true_divide

trunc

zeros

zeros_like

Modules:

IPParallelClient

algorithm

arrays

cloned

cloned_ndarray

h5

mappings

picongpu

3.2. Modules 27

pyDive Documentation, Release 1.1 beta

28 Chapter 3. Reference

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

engine The cluster nodes of IPython.parallel are called engines. Sometimes they are also called targets. They are
the workers of pyDive performing all the computation and file i/o and they hold the actual array-memory. From
the user perspective you don’t to deal with them directly.

29

pyDive Documentation, Release 1.1 beta

30 Chapter 4. Indices and tables

PYTHON MODULE INDEX

p
pyDive.algorithm, 20
pyDive.arrayOfStructs, 19
pyDive.arrays.gpu_ndarray, 16
pyDive.arrays.h5_ndarray, 15
pyDive.arrays.ndarray, 12
pyDive.cloned_ndarray.factories, 18
pyDive.fragment, 21
pyDive.mappings, 22
pyDive.picongpu, 23
pyDive.pyDive, 24

31

pyDive Documentation, Release 1.1 beta

32 Python Module Index

INDEX

Symbols
__init__() (pyDive.arrays.gpu_ndarray.gpu_ndarray

method), 16
__init__() (pyDive.arrays.h5_ndarray.h5_ndarray

method), 14
__init__() (pyDive.cloned_ndarray.cloned_ndarray.cloned_ndarray

method), 17
__init__() (pyDive.ndarray method), 11

A
array() (in module pyDive.arrays.gpu_ndarray), 16
array() (in module pyDive.arrays.ndarray), 12
arrayOfStructs() (in module pyDive.arrayOfStructs), 19

C
CIC (class in pyDive.mappings), 22
cloned_ndarray (class in py-

Dive.cloned_ndarray.cloned_ndarray), 17
copy() (pyDive.ndarray method), 12

D
dist_like() (pyDive.ndarray method), 12

E
empty() (in module pyDive.arrays.ndarray), 12
empty() (in module pyDive.cloned_ndarray.factories), 18
empty_engines_like() (in module py-

Dive.cloned_ndarray.factories), 18
empty_like() (in module pyDive.arrays.ndarray), 13
engine, 29

F
fragment() (in module pyDive.fragment), 21

G
gather() (pyDive.ndarray method), 12
getSteps() (in module pyDive.picongpu), 23
gpu_ndarray (class in pyDive.arrays.gpu_ndarray), 15

H
h5_ndarray (class in pyDive.arrays.h5_ndarray), 14

hdd_arraytypes (in module pyDive.fragment), 22
hollow() (in module pyDive.arrays.gpu_ndarray), 16
hollow() (in module pyDive.arrays.ndarray), 13
hollow() (in module pyDive.cloned_ndarray.factories), 18
hollow_engines_like() (in module py-

Dive.cloned_ndarray.factories), 18
hollow_like() (in module pyDive.arrays.gpu_ndarray), 17
hollow_like() (in module pyDive.arrays.ndarray), 13

L
load() (pyDive.arrays.h5_ndarray.h5_ndarray method),

15
loadAllSteps() (in module pyDive.picongpu), 23
loadStep() (in module pyDive.picongpu), 23
loadSteps() (in module pyDive.picongpu), 24

M
map() (in module pyDive.algorithm), 20
mapReduce() (in module pyDive.algorithm), 20
merge() (pyDive.cloned_ndarray.cloned_ndarray.cloned_ndarray

method), 17
mesh2particles() (in module pyDive.mappings), 22

N
ndarray (class in pyDive), 11
NGP (class in pyDive.mappings), 22

O
ones() (in module pyDive.arrays.ndarray), 13
ones() (in module pyDive.cloned_ndarray.factories), 18
ones_like() (in module pyDive.arrays.ndarray), 13
open() (in module pyDive.arrays.h5_ndarray), 15
open_dset() (in module pyDive.arrays.h5_ndarray), 15

P
particles2mesh() (in module pyDive.mappings), 23
pyDive.algorithm (module), 20
pyDive.arrayOfStructs (module), 19
pyDive.arrays.gpu_ndarray (module), 16
pyDive.arrays.h5_ndarray (module), 15
pyDive.arrays.ndarray (module), 12
pyDive.cloned_ndarray.factories (module), 18

33

pyDive Documentation, Release 1.1 beta

pyDive.fragment (module), 21
pyDive.mappings (module), 22
pyDive.picongpu (module), 23
pyDive.pyDive (module), 24

R
reduce() (in module pyDive.algorithm), 21

S
sum() (pyDive.cloned_ndarray.cloned_ndarray.cloned_ndarray

method), 17

T
to_cpu() (pyDive.arrays.gpu_ndarray.gpu_ndarray

method), 16

Z
zeros() (in module pyDive.arrays.ndarray), 13
zeros() (in module pyDive.cloned_ndarray.factories), 18
zeros_engines_like() (in module py-

Dive.cloned_ndarray.factories), 18
zeros_like() (in module pyDive.arrays.ndarray), 13

34 Index

	Getting started
	Quickstart
	Setup an IPython.parallel cluster configuration
	Run tests
	Overview

	Tutorials
	Example 1: Total field energy
	Example 2: Particle density field
	Example 3: Particle energy spectrum

	Reference
	Arrays
	Modules

	Indices and tables
	Python Module Index
	Index

